编者按:在Gartner发布的《2012年大数据Hype Cycle》报告中显示,大数据技术已经处在发展的最高峰时期。进入2013年之后,大数据分析技术还在快速变化着。Alteryx公司总裁George Mathew认为,未来大数据分析将向技术混合化、分析透明化和用户消费化靠拢。
一、技术混合化
Hadoop已经成为企业管理大数据的基础支撑技术。最近随着Greenplum Pivotal HD、Hortonworks Stinger和Cloudera的Impala的发布,Hadoop的技术创新速度正在加快,上述Hadoop项目传递出一个非常明确的信号:主要的Hadoop发行商想要在Hadoop HDFS之上提供实时、互动的查询服务。这个趋势将两个领域的杰作整合到了一起:众所周知的SQL查询处理与具备指数级扩展能力的HDFS存储架构。参考阅读:Hadoop发行版升级,NoSQL的未来是SQL?
二、分析透明化
预测分析是管理者进行数据化决策的关键。目前预测和统计分析领域已经已经有很多技术可以帮助企业洞察不远的未来。但预测分析眼下面临的的最大问题是“黑箱”化。随着企业领导越来越多地以来预测分析技术做出重大商业决策,预测分析技术需要去黑箱化:包括应用自描述数据沿袭,增加对底层数学和算法解释等。“去黑箱化”有利于企业管理者学会彻底驾驭数据分析工具,不但看到数据分析结果,还知道分析是如何得来的,分析工具的设计原理等,这有助于管理者增加对预测分析的信心,而不是过去那样完全依靠“信仰”。
三、用户消费化
即使实现了分析的去黑箱化,企业数据分析应用在企业中的部署依然面临以下几个方面的挑战:发布可复用应用,创建最佳实践、组织范围内的横向协作,无缝重组模型等。在最终用户(员工)中的应用普及是数据分析成功的关键。例如建设一个专门提供分析应用的企业移动应用商店App Store往往能大大加快数据分析的应用普及。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号

TechTarget
官方微博

TechTarget中国
相关推荐
-
乘风破浪!拥抱数据洪流
全球产生的数据量达到惊人的地步,2013年生成的数据总量约为3.5 ZB。到2020年,保守估计,全球年数据量将达到44 ZB。企业该如何在大数据的时代取胜?
-
Dr. Elephant:Hadoop和Spark的优化“神器”
美国加州软件公司Pepperdata的应用程序分析软件建立在Dr. Elephant开源项目上。主要目的是让更多的Hadoop和Spark应用程序投入生产。
-
对于预测建模来说,数据集才是决定成败的关键
数据科学核心任务之一是利用数据挖掘和机器学习算法来开发预测模型。但是,如果在前期没有选择正确的数据挖掘数据集合,即使是最佳设计的模型也可能会误入歧途。
-
《数据价值》2017年3月刊·当预测模型失败了
随着大数据环境的不断发展,集成和准备分析数据的工作正在发生显著的变化。