随着Spark受到越来越多的关注,许多企业正在尽力跟上这一开源平台快节奏的变化和发布频率。数据仓库研究院(TDWI)数据管理研究负责人Philip Russom博士表示:“许多企业正在尝试部署Apache Spark,通常会结合数据湖使用,希望能发挥其在流数据、查询和分析上的优势。但用户很快意识到,Spark并不容易使用,而且数据湖所需规划与设计超出用户想象。在这种情况下,用户需要求助于外部顾问和管理服务提供商,他们需要具备为各种不同类型的客户顺利部署Apache Spark和数据湖的可靠经验。”
大数据分析服务供应商Teradata天睿公司最近宣布旗下Think Big公司已经成功将Spark融入创建企业级品质数据湖和分析应用的开发框架。
目前,客户可在搭载“通用硬件”的一般Hadoop环境中部署云端Apache Spark使用数据湖。客户还可在Teradata Hadoop专用平台上使用。该就绪式企业级平台功能强大,专为运行企业级大数据工作负载进行预置和优化。
Think Big公司正在为部署Spark开发可复制的服务包,包括在提供数据湖和管理服务时,将Spark增加为执行引擎。Think Big还将通过旗下培训分支机构Think Big大数据学院(Think Big Academy)为企业客户提供一系列全新Spark培训课程。这些培训课程由经验丰富的讲师讲解,面向经理、开发人员和管理员培训如何使用Spark及机器学习、图形、流、查询等各种Spark模块。
Think Big数据科学团队还将开源Spark Python应用程序接口(API)的分布式K-Modes集群源程序。这些程序将为客户细分和客户流失分析提升分类数据集群性能。用户可访问Think Big公司的GitHub页面,获取该程序代码及Think Big其它开源项目。
Think Big公司总裁Ron Bodkin表示:“Think Big咨询业务正从美洲地区迅速拓展至欧洲和中国,因为首次接触数据湖时,企业对正确使用Spark和Hadoop所需专业技术、经验和方法的需求正在爆炸性增长。部署Spark应成为企业信息与分析战略中的重要组成部分。我们依据经验提供相关的使用案例,提出适当的问题,并提防部署中应注意的雷区。我们了解商业用户的期望和技术需求,能帮助客户创造真实的商业价值。而我们的Spark客户已在全渠道消费个性化、高科技制造业实时故障检测等领域付诸实践。”
早在大数据热潮兴起之前,Think Big就已专注大数据服务,致力于运用新兴技术实施分析解决方案。现在,Think Big依托完善的流程、健全的工具和经验丰富的大数据技术专家,在平台和应用支持方面为Hadoop提供管理服务,以经济的方式管理、监控并维护Hadoop平台。Think Big公司通过完善测试的转换流程,进行每一次部署安排,通过评估并提升客户的生产支持、开发和维持团队,使部署卓有成效。
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号

TechTarget
官方微博

TechTarget中国
相关推荐
-
Spark尚未“成熟” 用户仍需“专业”
虽然Spark的应用对企业而言已经并不陌生,但对于一些企业来说,这项技术可能还是比较“前沿”。
-
乘风破浪!拥抱数据洪流
全球产生的数据量达到惊人的地步,2013年生成的数据总量约为3.5 ZB。到2020年,保守估计,全球年数据量将达到44 ZB。企业该如何在大数据的时代取胜?
-
Dr. Elephant:Hadoop和Spark的优化“神器”
美国加州软件公司Pepperdata的应用程序分析软件建立在Dr. Elephant开源项目上。主要目的是让更多的Hadoop和Spark应用程序投入生产。
-
Spark和Hadoop分析遇障碍?可以试试容器啊
将定制的Spark和Hadoop试点项目转移到生产中是一项艰巨的任务,但容器技术缓解了这种艰难的过渡。