虽然大数据分析工具提供的功能并非全新,但有三大关键因素已经降低大数据分析的门槛,可以让更多的企业考虑采用大数据技术。 成本 早期的产品通常标价很高,并提供昂贵的集成与部署售后服务。现在的工具套件可选择性多,价格模式也更容易令人接受。 简易 越来越多的工具是面向非专家级别的用户设计的。
早期的产品使用者是统计师和数据家,他们不但建立模型,而且还理解这些模型具体如何工作。现在的产品不要求用户要有高级科学学历才能够理解模型结果中的业务优势。 性能 可扩展平台可以满足大数据分析对数据量和计算的需求。现在有很多开源平台具有跨分布式存储框架进行大规模并行处理的能力,这些框架部署在商业硬件上,其性价比远远高于……
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号

TechTarget
官方微博

TechTarget中国
虽然大数据分析工具提供的功能并非全新,但有三大关键因素已经降低大数据分析的门槛,可以让更多的企业考虑采用大数据技术。
成本
早期的产品通常标价很高,并提供昂贵的集成与部署售后服务。现在的工具套件可选择性多,价格模式也更容易令人接受。
简易
越来越多的工具是面向非专家级别的用户设计的。早期的产品使用者是统计师和数据家,他们不但建立模型,而且还理解这些模型具体如何工作。现在的产品不要求用户要有高级科学学历才能够理解模型结果中的业务优势。
性能
可扩展平台可以满足大数据分析对数据量和计算的需求。现在有很多开源平台具有跨分布式存储框架进行大规模并行处理的能力,这些框架部署在商业硬件上,其性价比远远高于过去的产品。
让大数据分析走进企业
使用大数据分析软件的门槛已经降低,这让那些有远见的企业能够快速试水大数据分析工具,并将这些工具整合到企业中。这样的企业有相似之处,因为他们具有以下特点:
- 数据或分析驱动的文化:业务主管认识到信息在创造企业价值所具有的潜力;
- 数据环境:主要决策者意识到各种各样的数据源可能有助于分析过程,有些是静态数据,更多的是动态数据流;
- 健康的实践环境:鼓励不断验证各种概念,并敏捷地决定采用大数据技术
换而言之,如果贵企业也具有这些特点的一二或全部,也可以准备将大数据分析整合到企业技术规划中,充分发挥大数据分析的优势。
一旦你明确大数据分析工具将会为企业带来好处,下一步将是确定企业的具体需求,将用来评估所选产品的具体条件进行优先级排序。然后,把这些需求和大数据分析工具提供的特点一一对应,用这些作为评估要素,并发给厂商投标申请书(RFI或RFP)。根据厂商的回复,再进一步加以选择,缩小大数据分析工具的选择范围。
请继续阅读《【大数据分析工具采购指南】主流大数据分析软件全面接触》
相关推荐
-
Spark和Hadoop分析遇障碍?可以试试容器啊
将定制的Spark和Hadoop试点项目转移到生产中是一项艰巨的任务,但容器技术缓解了这种艰难的过渡。
-
Tableau预测:自助式大数据分析时代正在来临
对于大数据而言,2016年是具有里程碑意义的一年,更多企业和机构在该年度存储和处理各种形态和规模的数据,并从中提取有价值的信息。
-
预测分析工具VS情感驱动 谁能左右分析结果?
使用预测分析工具的企业用户有个普遍的共识,那就是数据始终驱动业务决策。 但在政治领域,这种说法并不是那么适用。
-
重视大数据分析有哪些好处?IT经理有话说
随着Hadoop,Spark和其他大数据技术作为更多组织中的关键IT组件,越来越重视寻找大数据分析应用程序的业务优势,